首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   10篇
  国内免费   51篇
安全科学   8篇
废物处理   8篇
环保管理   18篇
综合类   72篇
基础理论   26篇
污染及防治   39篇
评价与监测   9篇
社会与环境   7篇
灾害及防治   10篇
  2023年   2篇
  2022年   5篇
  2021年   8篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   9篇
  2016年   7篇
  2015年   6篇
  2014年   12篇
  2013年   9篇
  2012年   12篇
  2011年   18篇
  2010年   9篇
  2009年   8篇
  2008年   6篇
  2007年   9篇
  2006年   7篇
  2005年   3篇
  2004年   8篇
  2003年   9篇
  2002年   4篇
  2001年   7篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   6篇
  1996年   7篇
  1995年   4篇
  1993年   1篇
  1991年   2篇
  1987年   1篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
191.
生物生态监测是环境监测的重要组成部分,具有综合反映环境问题、敏感性强等优点。本文从应对太湖蓝藻危机出发,分析了当前环境监测领域中生物生态监测所面临的形势和存在的问题,提出了其发展的新理念,并从五个方面提出了环境监测领域生物生态监测发展的具体思路,以此来推动生物生态监测的进一步发展。  相似文献   
192.
Vessel emissions have contributed a great deal to air quality deterioration in China. Hence,the Chinese government has promulgated a series of stringent emission regulations. It is in this context that vessel emission control technology research is in full swing. In particular,during the 13th Five-Year Plan, the air pollution control technology of vessels has greatly improved. Vessel emission control has followed two main governance routes: source emission reduction and aftertreatment technology...  相似文献   
193.
为了研究重金属复合胁迫下温度变化对陆生植物的毒性效应的影响,实验采用水培的方法,设置对照和Cu-Cd复合胁迫(10 μmol·L1 Cu+10μmol·L-1Cd)2个处理,每个处理分别设置3个不同的培养温度(8/4℃、25/20℃和35/30℃),对小麦进行48 h的暴露实验,测定小麦幼苗的生长及其对重金属和矿质营养...  相似文献   
194.
Environmental Science and Pollution Research - Using copper nitrate trihydrate as the copper source, TiO2@Cu-MOF nanocomposites were prepared by a one-step crystallization method, and the effect of...  相似文献   
195.
Temperature is an important physical factor, which strongly influences biomass and metabolic activity. In this study, the effects of temperature on the anoxic metabolism of nitrite(NO-2) to nitrous oxide(N2O) by polyphosphate accumulating organisms, and the process of the accumulation of N2O(during nitrite reduction), which acts as an electron acceptor, were investigated using 91% ± 4% Candidatus Accumulibacter phosphatis sludge. The results showed that N2O is accumulated when Accumulibacter first utilize nitrite instead of oxygen as the sole electron acceptor during the denitrifying phosphorus removal process. Properties such as nitrite reduction rate, phosphorus uptake rate, N2O reduction rate, and polyhydroxyalkanoate degradation rate were all influenced by temperature variation(over the range from 10 to 30°C reaching maximum values at 25°C). The reduction rate of N2O by N2O reductase was more sensitive to temperature when N2O was utilized as the sole electron acceptor instead of NO2, and the N2O reduction rates, ranging from 0.48 to 3.53 N2O-N/(hr·g VSS), increased to 1.45 to 8.60 mg N2O-N/(hr·g VSS). The kinetics processes for temperature variation of 10 to 30°C were(θ1 = 1.140–1.216 and θ2= 1.139–1.167). In the range of 10°C to 30°C, almost all of the anoxic stoichiometry was sensitive to temperature changes. In addition, a rise in N2O reduction activity leading to a decrease in N2O accumulation in long term operations at the optimal temperature(27°C calculated by the Arrhenius model).  相似文献   
196.
Yuan C  Weng CH 《Chemosphere》2006,65(1):88-96
An enhanced electrokinetic process for removal of metals (Cr, Cu, Fe, Ni, Pb, Zn) from an industrial wastewater sludge was performed. The electrokinetic experiments were conducted under a constant potential gradient (1.25 V cm(-1)) with processing fluids of tap water (TW), sodium dodecylsulfate (SDS) and citric acid (CA) for 5 days. Results showed that metal removal efficiency of heavy metals for EK-TW, EK-SDS and EK-CA systems are 11.2-60.0%, 37.2-76.5%, and 43.4-78.0%, respectively. A highest metal removal performance was found in EK-CA system. The removal priority of investigated metals from sludge by EK process was found as: Cu > Pb > Ni > Fe > Zn > Cr. The results of sequential extraction analysis revealed that the binding forms of heavy metals with sludge after electrokinetic process were highly depend upon the processing fluid operated. It was found that the binding forms of metals with sludge were changed from the more difficult extraction type (residual and sulfate fractions) to easier extraction types (exchangeable, sorbed, and organic fraction) after treatment by electrokinetic process. Results imply that if a proper treatment technology is followed by this EK process to remove metals more effectively, this treated sludge will be more beneficial for sludge utilization afterwards. Before it was reused, the risk associated with metals of more mobile forms to the environment need to be further investigated. The cost analysis was also evaluated for the investigated electrokinetic systems.  相似文献   
197.
● Cu addition enhances CH3OH oxidation and alleviates its inhibitory effect on SCR. ● Cu addition improves the activation of SCR reactants in the presence of methanol. ● Damaged structure by more Cu addition decreases specific surface area and acidity. ● Excessive Cu addition would lead to the narrowing of SCR temperature window. Simultaneously removal of NOx and VOCs over NH3-SCR catalysts have attracted lots of attention recently. However, the presence of VOCs would have negative effect on deNOx efficiency especially at low temperature. In this study, copper modification onto Sb0.5CeZr2Ox (SCZ) catalyst were performed to enhance the catalytic performance for simultaneous control of NOx and methanol. It was obtained that copper addition could improve the low-temperature activity of both NOx conversion and methanol oxidation, where the optimal catalyst (Cu0.05SCZ) exhibited a deNOx activity of 96% and a mineralization rate of 97% at 250 °C, which are around 10% higher than that of Cu free sample. The characterization results showed that copper addition could obviously enhance the redox capacity of the catalysts. As such, the inhibition effect of methanol incomplete oxidation on NO adsorption and NH3 activation were then lessened and the conversion of surface formamide species were also accelerated, resulting in the rising of NOx conversion at low temperature. However, excessive copper addition would damage the Sb-Ce-Zr oxides solid solution structure owing to Cu-Ce strong interactions, decreasing the surface area and acidity. Meanwhile, due to easier over-oxidation of NH3 with more Cu addition, the temperature window for NOx conversion would become quite narrow. These findings could provide useful guidelines for the synergistic removal of VOCs over SCR catalyst in real application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号